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ABSTRACTSpatial 
o-lo
ation patterns represent the subsets of eventswhose instan
es are frequently lo
ated together in geographi
spa
e. We identi�ed the 
omputational bottlene
k in theexe
ution time of a 
urrent 
o-lo
ation mining algorithm.A large fra
tion of the join-based 
o-lo
ation miner algo-rithm is devoted to 
omputing joins to identify instan
es of
andidate 
o-lo
ation patterns. We propose a novel partial-join approa
h for mining 
o-lo
ation patterns eÆ
iently. Ittransa
tionizes 
ontinuous spatial data while keeping tra
kof the spatial information not modeled by transa
tions. Ituses a transa
tion-based Apriori algorithm as a buildingblo
k and adopts the instan
e join method for residual in-stan
es not identi�ed in transa
tions. We show that thealgorithm is 
orre
t and 
omplete in �nding all 
o-lo
ationrules whi
h have prevalen
e and 
onditional probability abovethe given thresholds. An experimental evaluation using syn-theti
 datasets and a real dataset shows that our algorithmis 
omputationally more eÆ
ient than the join-based algo-rithm.
1. INTRODUCTIONA 
o-lo
ation represents a subset of spatial boolean eventswhose instan
es are often lo
ated in a neighborhood. Booleanspatial events des
ribe the presen
e or absen
e of geographi
obje
t types at di�erent lo
ations in a two dimensional orthree dimensional metri
 spa
e, e.g., surfa
e of the Earth.Examples of boolean spatial events in
lude business types,mobile servi
e request, disease, 
rime, 
limate, plant spe
ies,et
. Spatial 
o-lo
ation patterns may yield important in-sights for many appli
ations. For example, a mobile servi
eprovider may be interested in servi
e patterns frequently re-quested in a 
lose lo
ation, e.g., `today sales' and `nearbystores'. The frequent neighboring request sets may be usedfor providing attra
tive lo
ation-sensitive advertisements,
Thiswork waspartially supported byDigital TechnologyCenter of Univer-
sity of Minnesota, NASA grant No. NCC2 1231andtheArmy HighPerfor-
mance Computing Research Center under the auspices of the Department
of the Army, Army Research Laboratory cooperative agreement number
DAAD19-01-2-0014, the content of which does not necessarily reflect the
position or thepolicy of thegovernment, and no official endorsement should
be inferred.
.

promotion, et
. Other appli
ation domains for 
o-lo
ationsare Earth s
ien
e, environmental management, governmentservi
es, publi
 health, publi
 safety, transportation, tourism,et
.Co-lo
ation rule dis
overy is a pro
ess to identify 
o-lo
ationpatterns from an instan
e dataset of spatial boolean events.It is not trivial to adopt asso
iation rule mining algorithms [1,8, 13, 18℄ to mine 
o-lo
ation patterns sin
e instan
es of spa-tial events are embedded in a 
ontinuous spa
e and share avariety of spatial relationships. Reusing asso
iation rule al-gorithms may require transa
tionizing spatial datasets, whi
his 
hallenging due to the risk of transa
tion boundaries split-ting 
o-lo
ation pattern instan
es a
ross distin
t transa
-tions. Figure 1 (a) shows an example spatial dataset withthree spatial events, A, B, and C. Ea
h instan
e is repre-sented by its event type and unique instan
e id, e.g., A.1.Solid lines show neighbor relationships over event instan
es.For example, fA.2, B.4, C.2g and fA.3, B.3, C.1g are theinstan
es of 
o-lo
ation fA, B, Cg sin
e their event instan
esare neighbors of ea
h other. Figure 1 (b) shows the problemof expli
it transa
tionization. Re
tangular grids are used toprodu
e transa
tions over the spatial dataset. As 
an beseen by the solid line 
ir
le, the only identi�ed instan
e of
o-lo
ation fA, B, Cg is fA.2, B.4, C.2g. The instan
e fA.3,B.3, C.1g is missed due to the split 
aused by the transa
tionboundaries.Related Work: In previous work on 
o-lo
ation patterndis
overy, a few approa
hes have been developed to iden-tify instan
es of 
andidate 
o-lo
ation patterns. One ap-proa
h [12℄ groups neighboring instan
es arbitrarily with anon-overlapping instan
e grouping 
onstraint. This disjointgrouping method may yield di�erent instan
e sets by theorder of grouping. For example, Figure 1 (
) illustrates dif-ferent instan
e sets of 
o-lo
ation fA, B, Cg by the orderof grouping instan
es of size 2 
o-lo
ation fA, Bg. If an in-stan
e fA.4, B.3g is �rst grouped, the instan
e fA.3, B.3gis not identi�ed sin
e B.3 already belongs to instan
e fA.4,B.3g even if it is a neighborhood instan
e. Consequently,the instan
e fA.3, B.3, C.1g of 
o-lo
ation fA, B, Cg is alsonot found.Another approa
h [15℄ generates instan
es of 
andidate
o-lo
ations without any missing by using an instan
e joinmethod. For example, in Figure 1 (d), the instan
es of 
o-lo
ation fA, Bg and the instan
es of 
o-lo
ation fA, Cg arejoined and their neighbor relations are 
he
ked for gener-
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(d)Figure 1: Examples to illustrate di�erent approa
hes to dis
over 
o-lo
ation patterns (b) An expli
it transa
-tionization of a spatial dataset 
an split instan
es of 
o-lo
ations. (
) The non-overlapping grouping method
an generate sets of di�erent instan
es. (d) The instan
e join method generates 
omplete instan
es but
omputation is expensive.
ating instan
es of 
o-lo
ation fA, B, Cg. fA.2, B.4, C.2gand fA.3, B.3, C.1g are 
orre
tly generated. The join-basedalgorithm may be useful in analyzing datasets of sparse in-stan
es. However, s
aling the algorithm to substantiallylarge dense spatial datasets is 
hallenging due to the in-
reasing number of 
o-lo
ation patterns and their instan
es.Other 
o-lo
ation mining work [17℄ presents a framework forextended spatial obje
ts, e.g., polygons and line strings. Italso uses an instan
e join method to identify nearby spatialobje
ts.This paper proposes a novel approa
h for eÆ
ient 
o-lo
ation pattern mining. We make the following 
ontribu-tions.Our Contributions: First, we identi�ed the 
omputa-tional bottlene
k in the exe
ution time of the join-based
o-lo
ation mining algorithm [15℄. A large fra
tion of the al-gorithm is devoted to 
omputing joins to identify instan
esof 
andidate 
o-lo
ation patterns. Se
ond, we propose anovel partial-join approa
h for mining 
o-lo
ation patternseÆ
iently. It transa
tionizes 
ontinuous spatial data whilekeeping tra
k of the spatial information not modeled bytransa
tions. This approa
h is based on an important ob-servation that only event instan
es having at least one 
utneighbor relation are related to 
o-lo
ation instan
es splitover transa
tions. Third, we present an eÆ
ient 
o-lo
ationmining algorithm to 
on
retize the partial-join approa
h. Ituses a transa
tion-based Apriori algorithm [1℄ as a buildingblo
k and adopts the instan
e join method [15℄ of the join-based 
o-lo
ation mining algorithm for generating residual
o-lo
ation instan
es not identi�ed by transa
tions. Fourth,we prove that the partial join algorithm is 
orre
t and 
om-plete in �nding all 
o-lo
ation rules with prevalen
e and 
on-ditional probability above the given thresholds. Fifth, weprovide an algebrai
 
ost model to 
hara
terize the dom-inan
e zone of the performan
e between our partial-joinalgorithm and the join-based algorithm. Finally, we 
on-du
ted experiments using a real dataset as well as syntheti
datasets. The experimental evaluation shows that our algo-rithm is 
omputationally more eÆ
ient than the full join-

based mining algorithm.The remainder of the paper is organized as follows. Se
-tion 2 presents an overview of basi
 
on
epts of 
o-lo
ationpattern mining. In Se
tion 3, we present the partial join ap-proa
h for eÆ
ient 
o-lo
ation mining. Se
tion 4 des
ribesthe partial join 
o-lo
ation mining algorithm. The proofs of
orre
tness and 
ompleteness of the algorithm, and an alge-brai
 
ost model are given in Se
tion 5. Se
tion 6 presentsexperimental evaluations. We give the 
on
lusion and dis-
uss future work in Se
tion 7.
2. CO-LOCATION PATTERN MINING:

BASIC CONCEPTSThis se
tion des
ribes the basi
 
on
epts for mining 
o-lo
ation patterns.Given a set of boolean spatial events E = fe1; : : : ; ekg,a set S of their instan
es fi1; : : : ; ing, and a re
exive andsymmetri
 neighbor relation R over S, a 
o-lo
ation C is asubset of boolean spatial events, i.e., C � E whose instan
esI � S form a 
lique [3℄ using neighbor relation R. Forsimpli
ity, we use a metri
-based neighbor relation R, i.e.,neighbor(i1, i2) between event instan
es i1 and i2 de�nedby Eu
lidean distan
e(i1, i2) � a user-spe
i�ed threshold isused as a neighbor relation R.A 
o-lo
ation rule is of the form: C1 ! C2(p; 
p), whereC1 and C2 are disjoint 
o-lo
ations, p is a value representingthe prevalen
e measure, and 
p is the 
onditional probabil-ity.A neighborhood instan
e I of a 
o-lo
ation C is a rowinstan
e (simply, instan
e) of C if I 
ontains instan
es of allevents in C and no proper subset of I does so. For example,in Figure 1 (d), fA.1, B.1g is a row instan
e of 
o-lo
ationfA, Bg. fA.3, C.1, C.3g is a neighborhood in Figure 1 (a)but it is not a row instan
e of 
o-lo
ation fA, Cg be
auseits subset fA.3, C.1g 
ontains instan
es of all events in fA,Cg. The table instan
e of a 
o-lo
ation C is the 
olle
tionof all row instan
es of C. For example, the table instan
eof fB, Cg in Figure 1 (d) has two row instan
es, fB.3, C.1gand fB.4, C.2g.



The 
onditional probability, Pr(C1jC2), of a 
o-lo
ationrule C1 ! C2 is the probability of �nding an instan
e of C2in the neighborhood of an instan
e of C1. Formally, it isestimated as j�C1 (table instan
e of C1[C2)jjtable instan
e of C1j , where � is a pro-je
tion operation with dupli
ation elimination.The parti
ipation index, Pi(C) is used as a 
o-lo
ationprevalen
e measure. The parti
ipation index of a 
o-lo
ationC = fe1; : : : ; ekg is de�ned as minei2CfPr(C; ei)g, wherePr(C; ei) is the parti
ipation ratio for event type eiin a 
o-lo
ation C. Pr(C; ei) is the fra
tion of instan
esof ei whi
h parti
ipate in any instan
e of 
o-lo
ation C,j�ei (table instan
e of C)jjtable instan
e of eij , where � is a proje
tion operation withdupli
ation elimination. For example, in Figure 1 (a), thetotal number of instan
es of event type A is 4 and the to-tal number of instan
es of event type C is 3. From Fig-ure 1 (d), the parti
ipation index of 
o-lo
ation 
=fA, Cg isminfPr(
, A), Pr(
,C)g = 3/4 be
ause Pr(
, A) is 3/4 andPr(
,C) is 3/3. A high parti
ipation index value indi
atesthat the spatial events in a 
o-lo
ation pattern likely showup together.Lemma 1. The parti
ipation ratio and the parti
ipationindex are monotoni
ally non in
reasing with the size of the
o-lo
ation in
reasing.Proof. Please refer to [15℄ for the proof.Lemma 1 ensures that the parti
ipation index 
an be usedto e�e
tively prune the sear
h spa
e of 
o-lo
ation patternmining.
3. PARTIAL JOIN APPROACH FOR

CO-LOCATION PATTERN MININGThis se
tion de�nes our partial join approa
h for eÆ
ient
o-lo
ation pattern mining.
3.1 Problem DefinitionWe formalize the 
o-lo
ation mining problem as follows:Given:1) A set of k spatial event types E = fe1; : : : ; ekg and a setof their instan
es S = fi1; : : : ; ing, ea
h i 2 S is a ve
tor <instan
e id, spatial event type, lo
ation >, where lo
ation 2a spatial framework2) A symmetri
 and re
exive neighbor relation R over lo
a-tions3) A minimal prevalen
e threshold (min prev) and a mini-mal 
onditional probability threshold (min 
ond prob)Find:Find a 
orre
t and 
omplete set of 
o-lo
ation rules withparti
ipation index > min prev and 
onditional probability> min 
ond prob.Obje
tive:Minimize 
omputation 
ost.Constraints:1) R is a distan
e metri
 based neighbor relation.2) Ignore edge e�e
ts in R.3) Corre
t and 
omplete in �nding all 
o-lo
ation rules sat-isfying given thresholds.4) Spatial dataset is a point dataset.
3.2 Partial Join ApproachThe basi
 idea of the partial join approa
h is to redu
e thenumber of instan
e joins for identifying instan
es of 
andi-

date 
o-lo
ations by transa
tionizing a spatial dataset un-der a neighbor relationship and tra
ing only residual neigh-borhood instan
es 
ut apart via the transa
tions. The key
omponent of our approa
h is how we identify instan
es of
o-lo
ations split a
ross expli
it transa
tions. It is based onan observation that only event instan
es having at least one
ut neighbor relationship are related to the neighborhoodinstan
es split over transa
tions. To formalize this idea, weprovide a set of de�nitions of key terms related to the partialjoin approa
h.Definition 1. A neighborhood transa
tion(simply,transa
tion) is a set of instan
es T � S that forms a 
liqueusing a neighbor relation R. A spatial dataset S is parti-tioned to a set of disjoint transa
tions fT1; : : : ; Tng whereTi \ Tj = ;, i 6= j and [(T1; : : : ; Tn) = S.We assume a spatial dataset S 
an be partitioned to aset of distin
t transa
tions, i.e., ea
h event instan
e i 2 Sbelongs to one transa
tion. For example, Figure 3 shows aset of transa
tions on the same example spatial dataset ofFigure 1 (a). The dashed 
ir
le represents a neighborhoodregion 
entered at an arbitrary lo
ation on a spatial frame-work. The instan
es within the dashed 
ir
le are neighborsof ea
h other and thus forms a transa
tion. For example, B.2and B.5 form a transa
tion. A spatial dataset 
an be di�er-ently transa
tionized a

ording to the partitioning methodused. Thus the transa
tions generated using re
tangulargrids in Figure 1 (b) are a little di�erent from the trans-a
tions illustrated in Figure 3. For example, in Figure 3,fA.3, C.1, C.3g forms a single transa
tion. By 
ontrast, inFigure 1 (b), it is divided into two transa
tions, fA.3, C.3gand fC.1g. We will examine the e�e
t of di�erent transa
-tionization methods in future work.Definition 2. A row instan
e I of a 
o-lo
ation C is anintraX row instan
e (simply, intraX instan
e) of C if allinstan
es i 2 I belong to a 
ommon transa
tion T . TheintraX table instan
e of C is the 
olle
tion of all intraXrow instan
es of C.For example, in Figure 3, fA.3, C.1g is an intraX instan
eof 
o-lo
ation fA, Cg but fA.1, C.1g is not sin
e its eventinstan
es A.1 and C.1 are members of di�erent transa
tions.The intraX table instan
e of fA, Cg 
onsists of fA.3, C.1g,fA.3, C.3g and fA.2, C.2g.Definition 3. A neighbor relation r 2 R between twoevent instan
es, i1; i2 2 S; i1 6= i2 is 
alled a 
ut neighborrelation if i1 and i2 are neighbors of ea
h other but belongto distin
t transa
tions.Figure 3 presents 
ut neighbor relations as dotted lines.fA.1, C.1g, fA.3, B.3g and fB.3, C.1g has 
ut neighborrelations.Definition 4. A row instan
e I of a 
o-lo
ation C is aninterX row instan
e (simply, interX instan
e) of C if allinstan
es i 2 I have at least one 
ut neighbor relation. TheinterX table instan
e of C is the 
olle
tion of all interXrow instan
es of C.For example, in Figure 3, fA.3, B.3g is an interX instan
eof 
o-lo
ation fA, Bg be
ause A.3 has a 
ut neighbor relationwith B.3 and B.3 also has 
ut neighbor relations with A.3and with C.1. Note fA.3, C.1g is an interX instan
e as well



as an intraX instan
e of fA, Cg. InterX table instan
e offA, Cg has two interX instan
es fA.1, C.1g and fA.3, C.1g.Figure 2 illustrates the possible instan
es of size 3 
o-lo
ation and of size 4 
o-lo
ation lo
ated over neighborhoodtransa
tions. Bla
k dots signify event instan
es, 
ir
les aretransa
tions, and lines show neighbor relations between twoevent instan
es. Espe
ially, dotted lines signify 
ut neighborrelations. There are two types of instan
es of 
o-lo
ations.One is all event instan
es of a 
o-lo
ation instan
e belongto a single transa
tion. The other is the event instan
esare distributed a
ross two or more transa
tions. The for-mer is the 
ase of an intraX instan
e and the latter is aninterX instan
e. We 
an notify all event instan
es of in-terX instan
es are related to at least one 
ut neighbor rela-tion(dotted lines).
Instances
InterX

Instances
IntraX

Size
Co−location Size 4Size 3

Figure 2: The 
ases of possible instan
es of size 3and of size 4 
o-lo
ations over transa
tionsLemma 2. For a 
o-lo
ation C, the table instan
e of Cis the union of intraX table instan
e of C and interX tableinstan
e of C.Proof. The table instan
e of a 
o-lo
ation C is the 
ol-le
tion of all (row) instan
es of C. First, we will show anyinstan
e, I = fi1; : : : ; ing of C is an intraX instan
e of Cor an interX instan
es of C. Sin
e I forms a 
lique using aneighbor relation, all event instan
es of I 
an be in
luded ina single neighborhood transa
tion a

ording to de�nition 1.I be
omes an intraX instan
e. By 
ontrast, if all event in-stan
es of I are not in a single transa
tion, ea
h membershould have at least one 
ut neighborhood relation with theother members in di�erent transa
tions due to their 
liquerelation. Thus, I be
omes an interX instan
e. Se
ond, allinstan
es of intraX table instan
e and interX table instan
eof C are row instan
es whose event instan
es form a 
liquea

ording to de�nition 2 and de�nition 4 .
4. PARTIAL JOIN CO-LOCATION MINING

ALGORITHMThis se
tion des
ribes the partial join 
o-lo
ation min-ing algorithm. A transa
tion-based Apriori algorithm [1℄ isused as a building blo
k to identify all intraX instan
es of
o-lo
ations. InterX instan
es are generated using general-ized apriori gen fun
tion [15℄ of the join-based 
o-lo
ationmining algorithm. This approa
h is expe
ted to provide aframework for eÆ
ient 
o-lo
ation mining sin
e all instan
esin the transa
tion are neighbors of ea
h other and no spa-tial operation and 
ombinatorial operation, i.e., join, is re-quired to �nd instan
es of 
andidate 
o-lo
ations within atransa
tion, i.e., intraX instan
es. The 
omputation 
ost of
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Figure 3: An illustration of the partial join 
o-lo
ation mining algorithm
instan
e join operations for generating only interX instan
esnot identi�ed in the transa
tions is relatively 
heaper thanone for �nding all instan
es of 
o-lo
ations. The partial-joinmining algorithm for 
o-lo
ation patterns is des
ribed as fol-lows.Transa
tionization of a spatial dataset : Given a spa-tial dataset and a neighbor relation, the spatial dataset ispartitioned for generating neighborhood transa
tions. Thereare several partitioning methods adopted for neighborhoodtransa
tions, e.g., grids [14℄, maximal 
liques[3℄, max-
liqueagglomerative 
lustering [20℄, min 
ut partitioning [6℄ et
.The ideal 
ase is a method to generate a set of maximal
liques with minimizing the number of edges 
ut by parti-tions. In the 
ase of a simple grid partitioning, re
tangulargrids of a proximity neighborhood size d � d, where d isa neighbor distan
e metri
, are posed on a spatial frame-work, and event instan
es in ea
h 
ell are gathered for atransa
tion. Cut neighbor relations 
an be dete
ted by ex-amining all pairs (i1; i2) of instan
es in neighboring 
ells,i.e., (i1; i2) 2 R and i1:trans no 6= i2:trans no, where Ris a neighbor relation. It 
an be implemented using geo-metri
 approa
hes, e.g., plane sweep [2℄, spa
e partition-ing [9℄, tree mat
hing [10℄. Size 2 interX instan
es are gen-erated from all pairs(i1; i2) of instan
es having 
ut neigh-bor relations in ea
h transa
tion, i.e., i1 2 B, i2 2 B andi1:trans no = i2:trans no, where B is a set of event in-stan
es having 
ut neighbor relations , as well as 
ut neigh-borhood instan
es.Generation of 
andidate 
o-lo
ations : We use theapriori gen [1℄ for generating 
andidate 
o-lo
ation sets.Size k + 1 
andidate 
o-lo
ations are generated from sizek prevalent 
o-lo
ations. The anti-monotoni
 property ofthe parti
ipation index makes event level pruning feasible.S
anning transa
tions and gathering intraX instan
es



InputsE:a set of boolean spatial event typesS:a set of instan
es<event type, event instan
e id, lo
ation>R:a spatial neighbor relationmin prev:prevalen
e value thresholdmin 
ond prob:
onditional probability thresholdOutputA set of all prevalent 
o-lo
ation rules withparti
ipation index greater than min prevand 
onditional probability greater thanmin 
ond probVariablesk:
o-lo
ation sizeT:a set of transa
tionsCk:a set of size k 
andidate 
o-lo
ationsPk:a set of size k prevalent 
o-lo
ationsRk:a set of size k 
o-lo
ation rulesIntraXk:intraX table instan
es of CkInterXk:interX table instan
es of Ck, PkMethod1) (T, InterX2)=transa
tionize(S, R);2) k = 1; C1 = E; P1 = E;3) while (not empty Pk) do f4) Ck+1=gen 
andidate 
o-lo
ation(Pk);5) for all transa
tion t 2 T6) IntraXk+1=gather intraX instan
es(Ck+1 ; t);7) if k � 28) InterXk+1=gen interX intan
es(Ck+1; InterXk; R);9) Pk+1=sele
t prevalent 
o-lo
ation10) (Ck+1; IntraXk+1S InterXk+1;min prev);11) Rk+1=gen 
o-lo
ation rule(Pk+1;min 
ond prob);12) k = k + 1;13) g14) return S(R2; : : : ; Rk+1);Algorithm 1: Partial join 
o-lo
ation algorithm
: In ea
h iteration step, the transa
tions are s
anned andthe intraX instan
es of 
andidate 
o-lo
ations are enumer-ated. This step is similar to the apriori algorithm. However,noti
e that the transa
tions of a spatial event dataset di�erfrom the transa
tions of a market basket dataset. The tradi-tional market basket data transa
tion has only boolean itemtypes, i.e., an item is present in a transa
tion or not. By
ontrast, ea
h item of our neighborhood transa
tion 
onsistsof an event type and its instan
e id as des
ribed in Figure 3.One event type 
an have several instan
es in a transa
tion.To reuse an eÆ
ient trie data stru
ture [4, 7℄ in determininginstan
es of 
andidate 
o-lo
ations in a transa
tion, we 
on-vert several items of same event type with di�erent instan
eids to one event type item having a bitmap stru
ture [5℄ inwhi
h 
orresponding instan
e id bits are set. The 
onvertedtransa
tions are sear
hed for gathering intraX instan
es of
o-lo
ations. Figure 3 shows a 
on
eptual set of intraX tableinstan
es. A
tually, all instan
es are enumulated in the triestru
ture of itemsets using bitmaps.Generation of interX table instan
es : The interX tableinstan
e of Ck+1, k � 2 are generated from interX table in-stan
e of Ck using the generalized apriori gen fun
tion [15℄.The SQL-like syntax is des
ribed below.

forall 
o-lo
ation 
k+1 2 Ck+1insert into 
k+1.interX table instan
esele
t p.instan
e1, p.instan
e2, : : : , p.instan
ek, q.instan
ekfrom 
k.interX table instan
e1 p, 
k.interX table instan
e2 qwhere (p.instan
e1, : : : , p.instan
ek�1)= (q.instan
e1, : : : , q.instan
ek�1)and (p.instan
ek, q.instan
ek) 2 R;end;In Figure 3, an interX table instan
e of fA, Bg havingfA.3, B.3g and an interX table instan
e of fA, Cg havingfA.1, C.1g and fA.3, C.1g are joined to produ
e interX ta-ble instan
e of fA, B, Cg.Sele
tion of Prevalent Co-lo
ations: The parti
ipationindex of 
o-lo
ation Ck+1 is 
al
ulated from the union of in-traX table instan
e(Ck+1) and interX table instan
e(Ck+1).Candidate 
o-lo
ations are pruned using a given prevalen
ethreshold, min prev. In Figure 3, 
o-lo
ation fB, Cg hastwo instan
es, i.e., one is an intraX instan
e, fB.4, C.2g andthe other is an interX instan
e fB.3, C.1g. The parti
ipa-tion index of 
o-lo
ation fB, Cg is minf2/5, 2/3g = 2/5.If min prev is given as 1/2, the 
andidate 
o-lo
ation fB,Cg is pruned be
ause its prevalen
e measure is less than 1/2.Generation of Co-lo
ation Rules: This step generatesall 
o-lo
ation rules with high 
onditional probability abovea given min 
ond prob.
5. ANALYSISOF THE PARTIAL JOIN

CO-LOCATION MINING ALGORITHMIn this se
tion, we analyze the partial join 
o-lo
ation min-ing algorithm for 
ompleteness, 
orre
tness and 
omputa-tional 
omplexity. Completeness implies that no 
o-lo
ationrule satisfying given prevalen
e and 
onditional probabilitythresholds is missed. Corre
tness means that the parti
ipa-tion index values and 
onditional probability of generated
o-lo
ation rules meet the user spe
i�ed threshold.
5.1 Completenessand CorrectnessLemma 3. The partial join 
o-lo
ation mining algorithmis 
orre
t.Proof. The partial join 
o-lo
ation mining algorithm is
orre
t if 
o-lo
ation patterns produ
ed by algorithm 1 meetsthe thresholds of prevalen
e value and 
onditional probabil-ity. First, we will show that intraX instan
es and interXinstan
es are 
orre
t in the neighbor relation. Step 1 in al-gorithm 1 generates neighborhood transa
tions a

ording tode�nition 1. Thus the intraX instan
es gathered in step 6are 
orre
t in the neighbor relation. The interX instan
esgenerated in step 8 are proved by the 
orre
tness of gener-alized apriori gen algorithm [15℄. That is, all instan
es of agenerated interX instan
e are neighbor of ea
h other. Se
-ond, step 9 ensures that only prevalent 
o-lo
ation sets aresele
ted. Thus step 11 returns 
o-lo
ation rules above giventhresholds 
orre
tly.Lemma 4. The partial join 
o-lo
ation mining algorithmis 
omplete.



Proof. We prove if a 
o-lo
ation is prevalent, it is foundby algorithm 1. First, the monotoni
ity of the parti
ipationindex in lemma 1 proves the 
ompleteness of the event levelpruning of 
andidate 
o-lo
ations using apriori gen in step4. Se
ond, we will show that the intraX table instan
es andthe interX table instan
es generated from algorithm 1 are
omplete, whi
h will imply that all instan
es of 
o-lo
ationsare 
omplete a

ording to lemma 2. All intraX table in-stan
es are 
ompletely found by the apriori algorithm instep 6. Size 2 interX table instan
es generated from step1 are a superset of all neighboring instan
es ne
essary togenerate size k + 1, k � 2 interX instan
es. In step 8, the
ompleteness of the instan
e join method to generate interXinstan
es is the same as that of generalized apriori gen [15℄.In step 11, enumeration of the subsets of ea
h of the preva-len
e 
o-lo
ations ensures that no spatial 
o-lo
ation rulessatisfying given prevalen
e and 
onditional probabilities aremissed.
5.2 Computational Complexity AnalysisThis se
tion 
ompares the 
omputational 
ost of the join-based 
o-lo
ation mining algorithm and the partial join al-gorithm. Let Tjb(k+1) and Tpj(k+1) represent the 
osts ofiteration k of the join-based algorithm and the partial joinalgorithm respe
tively.Tjb(k + 1) = Tgen 
andi(Pk)+ Tgen inst(table insts of Pk) + Tprune(Ck+1)� Tgen inst(table insts of Pk)Tpj(k+1) = Tgen 
andi(Pk)+Tgath intraX inst(transa
tions)+ Tgen interX inst(interX table insts of Pk) +Tprune(Ck+1)� Tgen interX inst(interX table insts of Pk)In the above equations, Tgen 
andi(Pk) represents the 
ostof generating size k+1 
andidate 
o-lo
ation with the preva-lent size k 
o-lo
ations. Tgen inst(table insts of Pk) repre-sents the 
ost of generating table instan
es of size k + 1
andidate 
o-lo
ations with size k table instan
es.Tgath intraX inst(transa
tions) is the 
ost of s
anning trans-a
tions and gathering the instan
es of the size k + 1 
andi-date 
o-lo
ations. Tgen interX inst(interX table inst of Pk)is the 
ost of generating interX table instan
es of the sizek + 1 
andidate 
o-lo
ations with size k interX table in-stan
es. Tprune(Ck+1) represents the 
ost for pruning nonprevalent size k + 1 
o-lo
ations.The bulk of time is 
onsumed in generating instan
es.We assume that the 
ost of gathering intraX instan
es fromtransa
tions is relatively 
heaper than instan
e join 
ost,and that the other fa
tors, Tgen 
andi(Pk) and Tprune(Ck+1)are illegible. Thus the 
omputational ratio of the partial joinalgorithm over the join-based algorithm 
an be simpli�ed asTpj(k + 1)Tjb(k + 1) � Tgen interX inst(interX table insts of Pk)Tgen inst(table insts of Pk)The 
omputational ratio is a�e
ted by the size of interXtable instan
es and the size of table instan
es of 
o-lo
ationPk. The dominan
e fa
tors a�e
ting the number of interXinstan
es and the number of total instan
es 
an be the num-ber of 
ut neighbor relations and the data density of theneighborhood area. When the number of 
ut neighbor rela-tions is �xed and the data density in a neighborhood area

grows, the size of table instan
es in
reases rapidly and the
ost to generate the table instan
es is mu
h greater than the
ost to generate interX table instan
es. By 
ontrast, as thenumber of 
ut neighbor relations in
reases, the size of interXtable instan
es in
reases. Thus the average 
ost to gener-ate interX table instan
es grows. When all instan
es have
ut neighbor relations, they are involved in interX table in-stan
es thus the 
ost to generate the interX table instan
esis similar to the 
ost to generate table instan
es in the join-based algorithm. In our experiments, as des
ribed in thenext se
tion, we use the data density in neighborhood areaand the ratio of 
ut neighbor relations as key parameters toevaluate the algorithms. We 
an expe
t that the partial joinapproa
h is likely more eÆ
ient than the join-based methodwhen the lo
ations of spatial events are 
lustered in neigh-borhood areas and the number of 
ut neighbor relations issmaller.
6. EXPERIMENTAL EVALUATION
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d x d Figure 4: Experimental DesignWe evaluated the performan
e of the partial join algo-rithm with the join-based approa
h using syntheti
 and realdatasets. In Subse
tion 6.1, we des
ribe an overall exper-imental design and a syntheti
 data generator. In Subse
-tion 6.2, we evaluate the 
omputational eÆ
ien
y gainedfrom our partial join 
o-lo
ation algorithm with syntheti
datasets by studying the parameters that a�e
t performan
e.Subse
tion 6.3 
ompares the performan
e of the algorithmsusing a real dataset.
6.1 Experiment DesignFigure 4 shows an overall experiment layout. Syntheti
datasets were generated using a methodology similar to themethodology used to evaluate the join-based algorithm [15℄.We added some parameters and pro
edures in it to generatetransa
tionized instan
es and 
ut neighbor relations. Thesyntheti
 data generator allows better 
ontrols in studyingthe e�e
ts of interesting parameters. First we des
ribe thelayout of an overall spatial framework. For simple trans-a
tionization of a spatial dataset, we posed grids of neigh-borhood size d� d on a re
tangle spatial framework of sizeD1�D2. Ea
h grid 
ell is impli
itly divided into two parts, a
ore area and an overlapping area. The 
ore area is an areain whi
h event instan
es have neighbor relationships withonly instan
es in its grid 
ell. By 
ontrasts, instan
es inthe overlapping area are also under neighbor relations withinstan
es in its neighboring 
ells. This area was used forgenerating 
ut neighbor relations.



The syntheti
 spatial datasets were generated as follows.Given a number of base 
o-lo
ation patterns, N
o lo
, thesize of ea
h 
o-lo
ation n1 was pi
ked from a Poisson distri-bution with mean �1. We assigned randomly 
hosen sets ofevent types to the 
o-lo
ation patterns. The number of baseinstan
es of ea
h 
o-lo
ation n2 was 
hosen from anotherPoisson distribution with mean �2. Our data generator isalso 
ontrolled by two other parameters, 
ut instan
e ratio� and spatial framework size �. The 
ut instan
e ratio wasused for 
ontrolling the number of 
ut neighbor relations inthe experiment. (1��)�n2 instan
es were generated in the
ore area of a randomly 
hosen 
ell. � � n2 instan
es weregenerated over its overlapping area and the overlapping ar-eas of its neighboring 
ells. For simply 
ontrolling the datadensity value under datasets of the same size, we 
hangedthe size of the overall spatial framework. To in
rease thedensity value, we used a smaller spatial framework but thesame neighborhood size d� d.The partial join 
o-lo
ation algorithm and the join-based
o-lo
ation algorithm were exe
uted using generated spatialdatasets and a real set of 
limate data from NASA. The per-forman
e of the two algorithms was evaluated by exe
utiontime. The average 
o-lo
ation size and the average numberof instan
es of 
o-lo
ations of the generated datasets arelikely di�erent from the initial parameter values after gener-ating 
ut instan
es and also a

ording to the size of 
hoosenspatial framework for 
ontrolling the data density. We willaddress the e�e
t of these parameters and noise data onperforman
e in future work. All the experiments were per-formed on a Sun SunBlade 1500 with 1.0 GB main memoryand 177MHz CPU.
6.2 PerformanceStudyThe experiment was 
ondu
ted using detailed simulationsto answer the following questions :1. How does the ratio of 
ut neighbor relations over totalneighbor relations a�e
t the performan
e ?2. How does data density in the neighborhood area a�e
tthe performan
e ?3. How do the algorithms behave with di�erent prevalen
ethresholds ?The 
ommon parameter values used in these experimentswere as follows: the neighborhood size to de�ne a 
o-lo
ation,d� d, is 10� 10, the number of base 
o-lo
ations, N
o lo
,is 20, the average size of 
o-lo
ation patterns, �1, is 4 andthe average size of 
o-lo
ation instan
es, �2, is 50.E�e
t of ratio of 
ut neighbor relations : The e�e
tof performan
e by the ratio of 
ut neighbor relations over to-tal neighbor relations was evaluated with syntheti
 datasetsgenerated using the above 
ommon parameters and di�er-ent 
ut instan
e ratios, i.e., 0, 0.1, 0.2, 0.3, et
. The size ofthe overall spatial framework was �xed to 400 � 400. Theprevalen
e threshold was set to 0.2.Figure 5 shows the exe
ution time of both algorithms, thepartial join and the join-based, over 
ut neighbor relationratios. The ratio of 
ut neighbor relations over total neigh-bor relations was 
ontrolled by the 
ut instan
e ratio in theexperiment. The overall exe
ution time in
reased with in-
reases in the ratio. The reason is, that as the ratio of 
utrelations be
omes larger, the size of interX table instan
esin
reases. This 
auses the number of instan
es involved in
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Figure 5: E�e
t of ratio of 
ut neighbor relationsover total neighbor relations
the join operation to grow and the exe
ution time to in-
rease. The join-based algorithm also shows an in
rease inits exe
ution time. This happens be
ause the number of in-stan
es in the overlapping area in
reases and the possibilityof neighbor relations with instan
es in the nearby 
ells in-
reases, thus generating many neighborhood instan
es. Theaverage size of table instan
es also in
reases. The perfor-man
e di�eren
e between the two algorithms de
reases within
reases in the number of 
ut neighborhoods. When allevent instan
es were related to 
ut neighbor relations, thetwo algorithms showed similar exe
ution time.

Table 1: A 
omparison of size 2 instan
esData density Number of Number ofin the neighborhood size 2 interX size 2area instan
es instan
esof partial join of join-based0.07 2,429 18,4500.09 2,892 24,6960.10 3,426 30,2330.12 3,496 31,0990.13 4,268 39,583

 0

 100

 200

 300

 400

 500

 600

 700

 0.08  0.09  0.1  0.11  0.12  0.13

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Data density in the neighborhood area

partial join
join-based

Figure 6: E�e
t of data density on neighborhoodarea



E�e
t of data density in the neighborhood : The ef-fe
t of data density in the neighborhood area was evaluatedwith spatial datasets generated using the above 
ommonparameters and spatial frameworks of di�erent size �, i.e.,500 � 500, 400 � 400, 360 � 360, et
., to 
ontrol the datadensity on the neighborhood. The 
ut instan
e ratio � was�xed to 0.1 and the prevalen
e measure was set to 0.2. Thedensity value was 
al
ulated from the generated dataset. Itis the ratio of the average number of instan
es in a neigh-borhood area over the size of the square neighborhood area,10 � 10. The in
rease of data density in this experimentmainly a�e
ts to data density in the 
ore area sin
e the 
utinstan
e ratio is �xed.Figure 6 illustrates the performan
e gain by the partialjoin algorithm. As the density in
reases, the exe
ution timeof the join-based algorithm is dramati
ally in
reased. By
ontrast, the partial join algorithm shows little e�e
t fromthe size of data density in the neighborhood area. A small-s
ale in
rease of data in the the neighborhood area doesnot mu
h a�e
t the transa
tion-based algorithm while thejoin-based method shows great sensitivity to even a smallin
rease of the data density. Table 1 shows a 
omparisonbetween the number of size 2 interX instan
es generated bythe partial join algorithm and the number of size 2 instan
esof the join-based algorithm. These instan
es are involved ininstan
e join operations for generating size 3 instan
es. As
an be seen, the partial join approa
h had mu
h fewer in-stan
es than the join-method in this experiment.E�e
t of prevalen
e threshold : The performan
e ef-fe
t as the prevalen
e threshold in
reases is given in Fig-ure 7. The experiment was 
ondu
ted with the above 
om-mon parameters, a 400�400 spatial framework and a 0.3
ut instan
e ratio. The partial join approa
h showed mu
hbetter performan
e than the join-based approa
h when thethreshold values were low. However, the gap dramati
allyde
reased with in
reases in the threshold value. The reasonis the de
rease in the number of joins of instan
es due to theeÆ
ient pruning of the event level sear
h spa
e.

0

50

100

150

200

250

300

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Prevalence threshold

partial join
join-based

Figure 7: E�e
t of prevalen
e threshold
6.3 Experiment on a Real DatasetWe evaluated the partial join algorithm and the join-basedalgorithm using a NASA 
limate dataset of the U.S. region.All events were extra
ted at the threshold 1.5 using Z s
oretransformation [16℄. The number of event types was 18.The total number of event instan
es was 15,515. When the

neighborhood distan
e threshold was 4, the total number ofsize 2 neighborhood instan
es was 390,392 and the numberof size 2 
ut neighborhood instan
e(size 2 interX instan
es)was 314,078. When the prevalen
e threshold was 0.1, themaximum size of 
o-lo
ations was 5. Figure 8 presents theexe
ution time of the two algorithms as a fun
tion of theprevalen
e threshold. The partial join method shows rela-tively better performan
e.
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omparison using a real dataset
7. CONCLUSION AND FUTURE WORKIn this paper, we identi�ed the limitations of the 
urrent
o-lo
ation mining algorithm and proposed a novel partial-join approa
h for mining 
omplete and 
orre
t 
o-lo
ationpatterns. This approa
h transa
tionizes 
ontinuous spatialdata while keeping tra
k of the spatial information not mod-eled by transa
tions. To 
on
retize this approa
h, we pro-posed an eÆ
ient partial join 
o-lo
ation algorithm to adoptthe instan
e join method on the framework of the Aprioiralgorithm. We provided an algebrai
 
ost model to 
hara
-terize the dominan
e zone of the performan
e between thepartial-join approa
h and the join-based method. The per-forman
e study showed that our approa
h is 
omputation-ally more eÆ
ient and is espe
ially robust in data densityon the neighborhood.In future work, �rst, we plan to develop an alternative ef-�
ient join algorithm for generating instan
es of 
o-lo
ationswithout in
luding dupli
ate instan
es in intraX table in-stan
es and interX table instan
es. This approa
h will fur-ther redu
e the number of instan
e joins. The algorithm willbe robust in any dataset, e.g., dense datasets with many
ut neighborhoods. Se
ond, we used a regular grid basedtransa
tionziation. We plan to examine di�erent transa
-tionization methods, e.g., maximal 
liques[3℄, max-
liqueagglomerative 
lustering [20℄, min 
ut partitioning [6℄ et
.Third, re
ent work [19℄ on the 
o-lo
ation mining presentsa general method to �nd the maximal patterns of referen
efeature 
entri
 
o-lo
ations and 
lique 
o-lo
ations 
onsid-ering memory 
onstraints. It uses te
hniques of spatial joinalgorithms, e.g., partition-based spatial join [9℄ , multiwayspatial join [11℄. We plan to 
ompare our approa
h to thespatial join-based method. Finally, although 
urrent 
o-lo
ation patterns are de�ned over spatial features, data inmany appli
ations in
lude spatio-temporal features. Thuswe also plan to explore a 
o-lo
ation mining method forspatio-temporal datasets.
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